JOC_{Note}

Temperature-Controlled Synthesis of Substituted Pyridine Derivatives via the [5C + 1N] Annulation of 1,1-Bisalkylthio-1,4-pentanedienes and Ammonium Acetate

Jianglei Hu, Qian Zhang,* Hongjuan Yuan, and Qun Liu*

Department of Chemistry, Northeast Normal University, Changchun 130024, China

zhangq651@nenu.edu.cn

Received December 4, 2007

A novel temperature-controlled one-pot synthesis of substituted pyridine derivatives via [5C + 1N] annulation of 1,1bisalkylthio-1,4-pentanedienes and ammonium acetate is developed, and possible mechanisms leading to the divergent formation of the two types of pyridines are discussed.

Pyridines and their benzo-/hetero-fused analogues represent an important class of organic molecules for their presence in numerous natural products along with useful bio-, physio- and pharmacological activities.¹ Although many creative and practical methods for pyridine preparation have been developed,^{2,3}

(2) For books and reviews, see: (a) Katritzky, A. R., Rees, C. W., Eds. Comprehensive Heterocyclic Chemistry; Pergamon Press: Oxford, 1984; Vol. 2. (b) Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds. Comprehensive Heterocyclic Chemistry II; Pergamon Press: Oxford, 1996; Vol. 5. (c) Henry, G. D. Tetrahedron **2004**, 60, 6043–6061. (d) Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 **2001**, 2491–2515. (e) Mongin, F.; Quéguiner, G. Tetrahedron **2001**, 57, 4059–4090. (f) Balaban, A. T.; Oniciu, D. C.; Katritzky, A. R., Chem. Rev. **2004**, 104, 2777–2812. (g) Varela, J. A.; Saá, C. Chem. Rev. **2003**, 103, 3787–3801. (h) Chopade, P. R.; Louie, J. Adv. Synth. Catal. **2006**, 348, 2307–2327.

(3) For selected resent works, see: (a) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592-4593. (b) Kase, K.; Goswami, A.; Ohtaki, K.; Tanabe, E.; Saino, N.; Okamoto, S. Org. Lett. 2007, 9, 931-934. (c) Andersson, H.; Almqvist, F.; Olsson, R. Org. Lett. 2007, 9, 1335-1337. (d) Senaiar, R. S.; Young, D. D.; Deiters, A. Chem. Commun. 2006, 1313-1315. (e) McCorrnick, M. M.; Duong, H. A.; Zuo, G.; Louie, J. J. Am. Chem. Soc. 2005, 127, 5030-5031. (f) Evdokimov, N. M.; Magedov, I. V.; Kireev, A. S.; Kornienko, A. Org. Lett. 2006, 8, 899-902.

which employ [5 + 1],^{2b,3a,4} [2 + 2 + 1 + 1],⁵ [2 + 2 + 2],⁶ [3 + 3],⁷ $[4 + 2]^8$ and $[3 + 2 + 1]^9$ synthetic strategies with respect to pyridine ring disconnection, each synthesis must be carefully planned due to the incompatibility of certain functional groups. Therefore, there is a continuing need to generate new and improved methods for pyridine synthesis. The [5 + 1] annulation of 1,5-dicarbonyl compounds and their equivalents with ammonia represents one of the most simple and reliable routes due to its straightforward concept.^{2b,4} However, the problem associated with this transformation is the availability of suitable starting materials. Thus, it is of great importance to explore more appropriate precursors for efficient synthesis of pyridine derivatives via a [5 + 1] annulation strategy.

In view of the above and our interest in the synthesis of carboand heterocyclic compounds, $^{10-14}$ the [5C + 1C], 12 [5C + 1N], 13 and [5C + 1S]¹⁴ annulation strategies have been developed based on the new 1,5-bielectrophilic alkenoyl ketene-(*S*,*S*)-acetal precursors. Recently, by combining the advantages of functionalized ketene-(*S*,*S*)-acetals¹¹⁻¹⁵ and Morita–Baylis–Hillman

(5) (a) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Tymoshenko, D. O.; Essawy, S. A. *Synthesis* **1999**, *12*, 2114–2118. (b) Hegde, V.; Jahng, Y. D.; Thummel, R. P. *Tetrahedron Lett.* **1987**, *28*, 4023–4026.

(8) (a) Pabst, G. R.; Schmid, K.; Sauer, J. *Tetrahedron Lett.* **1998**, *39*, 6691–6694. (b) Lenoir, I.; Smith, M. L. J. Chem. Soc., Perkin Trans. 1 **2000**, 641–643. (c) Bushby, N.; Moody, C. J.; Riddick, D. A.; Waldron, I. R. Chem. Commun. **1999**, 793–794. (d) Sharma, U.; Ahmed, S.; Boruah, R. C. *Tetrahedron Lett.* **2000**, *41*, 3493–3495. (e) Janz, G. J.; Monahan, A. R. J. Org. Chem. **1964**, *29*, 569–571.

(9) (a) Konno, K.; Hashimoto, K.; Shirahama, H.; Matsumoto, T. *Tetrahedron Lett.* **1986**, *27*, 3865–3868. (b) Davies, I. W.; Marcoux, J.-F.; Corley, E. G.; Journet, M.; Cai, D.-W.; Palucki, M.; Wu, J.; Larsen, R. D.; Rossen, K.; Pye, P. J.; DiMichele, L.; Dormer, P.; Reider, P. J. *J. Org. Chem.* **2000**, *65*, 8415–8420. (c) Marcoux, J.-F.; Corley, E. G.; Rossen, K.; Pye, P.; Wu, J.; Robbins, M. A.; Davies, I. W.; Larsen, R. D.; Reider, P. J. *Org. Lett.* **2000**, *2*, 2339–2341. (d) Bates, R. B.; Gordon, B., III; Keller, P. C.; Rund, J. V.; Mills, N. S. J. Org. Chem. **1980**, *45*, 168–169. (e) Murugan, R.; Scriven, E. F. V. J. Heterocycl. Chem. **2000**, *37*, 451–454.

(10) (a) Zhang, Z.; Zhang, Q.; Sun, S.; Xiong, T.; Liu, Q. *Angew. Chem., Int. Ed.* **2007**, *46*, 1726–1729. (b) Zhang, Q.; Zhang, Z.; Yan, Z.; Liu, Q.; Wang, T. *Org. Lett.* **2007**, *9*, 3651–3653. (c) Zhang, Z.; Zhang, Q., Yan, Z.; Liu, Q. *J. Org. Chem.* **2007**, *72*, 9808–9810. (d) Xiong, T.; Zhang, Q.; Zhang, Z.; Liu, Q. *J. Org. Chem.* **2007**, *72*, 8005–8009.

(11) (a) Zhao, Y.; Liu, Q.; Zhang, J.; Liu, Z. J. Org. Chem. 2005, 70, 6913-6917. (b) Li, Y.; Liang, F.; Bi, X.; Liu, Q. J. Org. Chem. 2006, 71, 8006-8010. (c) Liang, F.; Zhang, J.; Tan, J.; Liu, Q. Adv. Synth. Catal. 2006, 348, 1986-1990. (d) Liu, J.; Wang, M.; Li, B.; Liu, Q.; Zhao, Y. J. Org. Chem. 2007, 72, 4401-4405. (e) Zhao, Y.; Zhang, W.; Wang, S.; Liu, Q. J. Org. Chem. 2007, 72, 4985-4988.

(12) (a) Bi, X.; Dong, D.; Liu, Q.; Pan, W.; Zhao, L.; Li, B. J. Am. Chem. Soc. 2005, 127, 4578–4579. (b) Zhang, Q.; Sun, S.; Hu, J.; Liu, Q.; Tan, J. J. Org. Chem. 2007, 72, 139–143.

(13) (a) Dong, D.; Bi, X.; Liu, Q.; Cong, F. Chem. Commun. 2005, 3580–3582. (b) Zhao, L.; Liang, F.; Bi, X.; Sun, S.; Liu, Q. J. Org. Chem. 2006, 71, 1094–1098.

(14) Bi, X.; Dong, D.; Li, Y.; Liu, Q. J. Org. Chem. 2005, 70, 10886–10889.

(15) For reviews, see: (a) Dieter, R. K. *Tetrahedron* **1986**, *42*, 3029–3096. (b) Junjappa, H.; Ila, H.; Asokan, C. V. *Tetrahedron* **1990**, *46*, 5423–5506. (c) Kolb, M. *Synthesis* **1990**, 171–190. (d) Ila, H.; Junjappa, H.; Barun, O. *J. Organomet. Chem.* **2001**, *624*, 34–40.

10.1021/jo702586p CCC: \$40.75 © 2008 American Chemical Society Published on Web 02/22/2008

^{(1) (}a) Farhanullah; Agarwal, N.; Goel, A.; Ram, V. J. J. Org. Chem.
2003, 68, 2983–2985. (b) Joule, J. A.; Smith, G.; Mills, K. Heterocyclic Chemistry, 3rd ed.; Chapman and Hall: London, 1995; pp 72–119. (c) Li,
A.-H.; Moro, S.; Forsyth, N.; Melman, N.; Ji, X.-D.; Jacobsen, K. A. J.
Med. Chem. 1999, 42, 706–721. (d) Vacher, B.; Bonnaud, B.; Funes, P.;
Jubault, N.; Koek, W.; Assié, M.-B.; Cosi, C.; Kleven, M. J. Med. Chem.
1999, 42, 1648–1660. (e) Choi, W. B.; Houpis, I. N.; Churchill, H. R. O.;
Molina, A.; Lynch, J. E.; Volante, R. P.; Reider, P. J.; King, A. O.
Tetrahedron Lett. 1995, 36, 4571–4574. (f) Abe, Y.; Kayakiri, H.; Satoh,
S.; Inoue, T.; Sawada, Y.; Inamura, N.; Asano, M.; Aramori, I.; Hatori, C.;
Sawai, H.; Oku, T.; Tanaka, H. J. Med. Chem. 1998, 41, 4062–4079. (g)
Song, Z. J.; Zhao, M.; Desmond, R.; Devine, P.; Tschaen, D. M.; Tillyer,
R.; Frey, L.; Heid, R.; Xu, F.; Foster, B.; Li, J.; Reamer, R.; Volante, R.;
Grabowski, E. J. J.; Dolling, U. H.; Reider, P. J. J. Org. Chem. 1999, 64, 9658–9667. (h) Wagner, F. F.; Comins, D. L. Tetrahedron 2007, 63, 8065–8082.

^{(4) (}a) Chubb, R. W. J.; Bryce, M. R.; Tarbit, B. J. Chem. Soc., Perkin Trans. 1 2001, 16, 1853–1854. (b) Katritzky, A. R.; Denisenko, A.; Arend, M. J. Org. Chem. 1999, 64, 6076–6079. (c) Craig, D.; Henry, G. D. Tetrahedron Lett. 2005, 46, 2559–2562.

⁽⁶⁾ Chelucci, G.; Faloni, M.; Giacomelli, G. *Synthesis* 1990, 1121–1122.
(7) (a) Katritzky, A. R.; Belyakov, S. A.; Sorochinsky, A. E.; Henderson, S. A.; Chen, J. J. Org. Chem. 1997, 62, 6210–6214. (b) Nedolya, N. A.; Schlyakhtina, N. I.; Kllyba, L. V.; Ushakov, I. A.; Fedorov, S. V.; Brandsma, L. Tetrahedron Lett. 2002, 43, 9679–9681.

 TABLE 1. Reaction of 3a with NH4OAc under Different Conditions

	ĊN		ĊN		SEt NH2	
		H ₃ ∢ NH₄OAc		~_~o	CH ₃ MH₄OAc H ₃ CO	
	6a		3a	I		5a
entry	NH ₄ OAc (equiv)	<i>Т</i> (°С)	solvent	time (h)	yield (%) 5a	yield (%) 6a
1	1.0	65	DMF	12.0	10	0
2	4.0	65	DMF	6.0	83	0
3	8.0	65	DMF	6.0	82	0
4	4.0	65	DMSO	6.0	78	0
5	4.0	25	DMF	6.0	0	0
6	4.0	40	DMF	6.0	16	0
7	4.0	90	DMF	6.0	64	10
8	4.0	120	DMF	6.0	28	32
9	8.0	120	DMF	1.0	trace	54

SCHEME 1

SCHEME 2

(MBH) adducts¹⁶ in organic synthesis, we realized the efficient direct C–C coupling reaction between α -cyanoketene-(*S*,*S*)-acetals **1** and MBH adducts **2** (Scheme 1). As a result, the new 1,5-dielectrophiles, substituted 1,1-bisalkylthio-1,4-pentane-dienes **3**, were prepared and successfully used for the synthesis of the unsymmetrical biaryls **4** via a [5C + 1C] annulation (Scheme 1).^{12b} As part of our continuing studies on the development of the synthesis of substituted pyridine derivatives from the 5C precursor, 1,1-bisalkylthio-1,4-pentanediene **3** via [5C + 1N] annulation strategy, in this contribution, the remarkable temperature-controlled synthesis of two types of substituted pyridine derivatives **5** and **6** from the same precursors (**3** and ammonium acetate) is reported (Scheme 2).

According to our previous work,^{12b} the [5C + 1N] annulation of 2-(bisethyl(ethylthio)methylene)-4-(4-methoxybenzylidene)pentanedinitrile (**3a**) with ammonium acetate was focused on at first (Table 1). After many attempts, it was found that a pyridine derivative, 6-amino-5-(ethylthio(4-methoxyphenyl)methyl)nicotinonitrile (**5a**), could be isolated in 83% yield when the reaction of **3a** and ammonium acetate was performed in DMF at 65 °C for 6 h (Table 1, entry 2). The reaction was then carried out under various conditions to optimize the yield. The experiments revealed that the addition of 4.0 equiv of ammonium acetate was enough for a high transformation from **3a** to **5a** (Table 1, entries 1–3). In addition, the reaction is greatly affected by the solvent. For example, no desired product **5a** was obtained in the solvents such as toluene, dichloromethane,

TABLE 2.	[5C + 1N] Annulation of 3 with NH ₄ OAc to Pyridines
5^a and 6^b	

5 ⁰							
		Ar			SR NH ₂		
N NH	OAc (8 equiv) NC	SR	NH₄OAc (4	equiv)	\downarrow		
Ĵ -	120.90			<u>'</u> , Ar			
	120 0	└── `SR	65 °C		\forall		
1	CN						
	3						
	substrate		time	pyridine	vieldc		
3	Ar	R	(h)	5 or 6	(%)		
3b	3,4-O ₂ CH ₂ C ₆ H ₃	Et	6.0	5b	85		
3c	2-MeOC ₆ H ₄	Et	8.0	5c	75		
3d	3-MeOC ₆ H ₄	Et	10.0	5d	69		
3e	4-EtOC ₆ H ₄	Et	10.0	5e	74		
3f	4-MeOC ₆ H ₄	Me	10.0	5f	73		
3g	4-MeOC ₆ H ₄	<i>n</i> -Bu	10.0	5g	69		
3h	4-MeOC ₆ H ₄	Bn	10.0	5h	77		
3i	Ph	Et	48.0	5i	36 ^{d,e}		
3j	4-ClC ₆ H ₄	Et	48.0	5j	0 ^f		
3b	3,4-O ₂ CH ₂ C ₆ H ₃	Et	3.0	6b	70		
3c	2-MeOC ₆ H ₄	Et	5.0	6c	54		
3d	3-MeOC ₆ H ₄	Et	4.0	6d	56		
3e	4-EtOC ₆ H ₄	Et	3.0	6e	56		
3f	4-MeOC ₆ H ₄	Me	3.0	6e	52		
3g	4-MeOC ₆ H ₄	<i>n</i> -Bu	3.0	6e	57		
3h	4-MeOC ₆ H ₄	Bn	3.0	6e	54		
3j	$4-ClC_6H_4$	Et	48.0	6j	0 ^f		
	5° NHJ 3 3b 3c 3d 3c 3d 3f 3g 3h 3i 3g 3h 3g 3h 3j 3g 3h 3j 3g 3h 3g 3h 3g 3h	$\begin{array}{c c} & & & \\ & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

^{*a*} Reaction conditions unless otherwise noted: **3** (1.0 mmol), NH₄OAc (4.0 mmol), DMF (10 mL) at 65 °C. ^{*b*} Reaction conditions: **3** (1.0 mmol), NH₄OAc (8.0 mmol), DMF (10 mL) at 120 °C. ^{*c*} Isolated yields. ^{*d*} The reaction was performed at 120 °C with 8.0 equiv of NH₄OAc. ^{*e*} 63% of **3i** was recovered. ^{*f*} **3j** was recovered.

FIGURE 1. ORTEP drawing of 5a.

ethanol, THF and acetonitrile, and 5a was obtained in a little lower yield with DMSO as the solvent (Table 1, entry 4). It is worth emphasizing that the reaction is very sensitive to temperature. For example, when the reaction was carried out at room temperature, no desired product 5a was observed (Table 1, entry 5). When the reaction temperature was maintained at 65 °C, 5a was formed in high yields (Table 1, entries 2 and 5-8). Interestingly, when the temperature was higher than 90 °C, a new pyridine derivative 2-(4-methoxyphenyl)pyridine-3,5-dicarbonitrile (6a) was obtained along with the formation of pyridine 5a (Table 1, entries 7 and 8), and 6a could be obtained exclusively with good yield within 1 h when the reaction was performed at 120 °C and 8.0 equiv of ammonium acetate was added (Table 1, entry 9). In addition, 5a was stable in the presence of 8.0 equiv of ammonium acetate at 120 °C. In fact, selective synthesis has been a formidable challenge in organic synthesis, especially controlled highly selective synthesis beginning from the same starting materials.¹⁷ So far, to the best

⁽¹⁶⁾ For reviews, see: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. *Chem. Rev.* **2003**, *103*, 811–892. (b) Drewes, S. E.; Ross, G. H. P. *Tetrahedron* **1988**, *44*, 4653–4670. (c) Basavaiah, D.; Rao, P. D; Hyma, R. S. *Tetrahedron* **1996**, *52*, 8001–8062. (d) Kataoka, T.; Kinoshita, H. *Eur. J. Org. Chem.* **2005**, 45–58.

SCHEME 3. Proposed Mechanisms for the Temperature-Controlled Pyridines Syntheses

of our knowledge, there are no reports for the divergent synthesis of two types of substituted pyridine derivatives from the same 5C fragment and ammonium acetate via a [5C + 1N] annulation.

Subsequently, the reactions of a series of available 1,1bisalkylthio-1,4-pentanedienes 3^{12b} with ammonium acetate were carried out to understand the efficiency of the temperaturecontrolled synthesis of substituted pyridine derivatives. At 65 °C and under the reaction conditions as indicated in Table 1, entry 2, the reactions between 3b-3h and ammonium acetate (4.0 equiv) proceeded smoothly to afford the corresponding trisubstituted pyridines 5b-5h in good to high yields (Table 2, entries 1–7). The structure of 5a was further confirmed by single-crystal X-ray diffraction analysis (Figure 1).

On the other hand, for the reactions performed at 120 °C as shown in Table 1, entry 9, the reactions of 3b-3e with 8.0 equiv of ammonium acetate, gratifyingly, did result in the formation of the corresponding pyridines 6b-6e in good yields (Table 2, entries 10-13). Furthermore, **6e** could also be obtained in good yields starting from 3f-3h, regardless of the difference of the alkylthic groups of **3** (Table 2, entries 14-16). However, in the case of the reactions between 3i and ammonium acetate, under the conditions described in Table 1, entry 2, no reaction occurred; under the conditions described in Table 1, entry 9, and reacted for 48 h, 5i was obtained in 36% isolated yield with 63% of 3i recovered (Table 2, entry 8), and no product 6i was detected. In addition, for precursor 3j, with an electronwithdrawing chloro group on the aryl ring, under both conditions described in Table 1, entry 2 and entry 9, no reactions occurred, and only 3j was recovered (Table 2, enties 9 and 17). The significant difference between the reactivities of 3i, 3j, and **3a-3h** may indicate that the electron-donating nature of the aryl substitute of 3 plays an important role in the annulation reaction.

On the basis of all above experiments and our previous works,¹² the possible mechanisms for the formation of pyridine derivatives **5** and **6** are proposed as shown in Scheme 3. The intermediates **7** is first formed via aza-Michael-S_NV reaction of 1,1-bisalkylthio-1,4-pentanediene **3** with ammonia and the subsequent transformations can be temperature dependent. When the temperature is controlled at 65 °C, an intermolecular thia-Michael addition of thiolate anion through path A is preferred, which leads to intermediate **8**. By this way, pyridine **5** is finally provided through the consecutive intramolecular aza-annulation. Whereas, when the temperature is raised to 120 °C, the intramolecular aza-Michael addition of **7** through path B is more likely to occur, which leads to intermediate **10**. Finally, pyridine **6** can be formed via the subsequent elimination of an alkylthiol and oxidation process.

It should be noted that the highly selective formation of two types of pyridines can be attributed to the promising structural features of the five-carbon fragments **3**, which include: (1) the potential dual 1,5-bielectrophilic units as shown in Scheme 3; (2) the important multiple role of the dialkylthio group acting as leaving group in the S_NV process (for example, in the transformation from **3** to **7** in Scheme 3), elimination (for example, from **9** to **5** and **10** to **6** in Scheme 3) to meet the aromatic requirements, and the adjustment to the annulation by the intermolecular thia-Michael addition from **7** to **8** as shown in Scheme 3.

In summary, the novel temperature-controlled efficient synthesis of pyridine derivatives through one-pot [5C + 1N] annulation reactions of the 1,1-bisalkylthio-1,4-pentanedienes **3** and ammonium acetate has been developed. Two types of pyridine derivatives **5** and **6** were synthesized in good to high yields, which can be attributed to the notable features of 1,1-bisalkylthio-1,4-pentanedienes **3**. The expansion of this methodology and the further synthetic application of **3** are in progress.

Experimental Section

General Procedure for the Preparation of 5 (with 5a as an example). To a well-stirred solution of 3a (344 mg, 1.0 mmol) and ammonium acetate (308 mg, 4.0 mmol) in 5 mL of *N*,*N*-dimethylformamide (DMF). The reaction mixture was well stirred at 65 °C for 6.0 h (monitored by TLC). Then the above mixture was poured into ice—water, extracted with dichloromethane (10 mL \times 3), and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by a flash silica gel column chromatography to give product 5a (248 mg, 83%) as a yellow solid (eluent: diethyl ether/petroleum ether = 1/1).

Selected data for 5a: mp 130–132 °C; ¹H NMR (CDCl₃, 500 MHz) δ 1.25 (t, J = 7.5 Hz, 3H), 2.43 (q, J = 7.5 Hz, 2H), 3.83 (s, 3H), 4.97 (s, 1H), 5.42 (s, 2H), 6.91 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 7.53 (s, 1H), 8.30 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 14.4, 26.5, 49.0, 55.6, 99.2, 114.8, 118.3, 120.1, 129.2, 129.9, 139.7, 151.7, 158.9, 159.7; IR (KBr) 3113, 2361, 2216, 1641, 1250; MS (m/z): 300.1 [(M + 1)]⁺; Anal. Calcd for C₁₆H₁₇N₃OS: C, 64.19; H, 5.72; N, 14.04; Found C, 64.26; H, 5.69; N, 13.99.

General Procedure for the Preparation of 6 (with 6a as an example): To a well-stirred solution of 3a (344 mg, 1.0 mmol) and ammonium acetate (616 mg, 8.0 mmol) in 5 mL of *N*,*N*-dimethylformamide (DMF). The reaction mixture was well stirred at 120 °C for 1.0 h (monitored by TLC). Then the above mixture was poured into ice—water, extracted with dichloromethane (10 mL \times 3), and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by a flash silica gel column chromatography to give product 6a (127 mg, 54%) as a yellow solid (eluent: diethyl ether/petroleum ether = 1/15).

Selected data for 6a: mp 162–164 °C; ¹H NMR (CDCl₃, 500 MHz) δ 3.91 (s, 3H), 7.08 (d, J = 8.5 Hz, 2H), 8.06 (d, J = 8.5 Hz, 2H), 8.29 (s, 1H), 9.04 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz)

 δ 55.5, 106.5, 107.1, 114.2, 114.5, 115.0, 116.3, 127.8, 131.1, 145.0, 154.3, 162.6; IR (KBr) 3153, 2978, 2360, 2342, 1589, 1446, 1262; MS (*m/z*): 236.1[(M + 1)]⁺; Anal. Calcd for C₁₄H₉N₃O: C, 71.48; H, 3.86; N, 17.86; Found C, 71.39; H, 3.90; N, 17.51.

Acknowledgment. Financial support of this research by the Ministry of Education of China (106064), the NNSFC (20772015), Training Fund of NENU'S Scientific Innovation

Project, and analysis and testing foundation of Northeast Normal University is greatly acknowledged.

Supporting Information Available: Experimental details and full characterization data, copies of ¹H and ¹³C NMR spectra for all new compounds, CIF for compound **5a**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO702586P